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We have studied a time-independent nonlinear Schrodinger equation of the tight-binding form on
a one-dimensional lattice. The real and complex wave functions as solutions to the equation are
considered separately for different physical problems. For each case, an area-preserving map for the
discrete nonlinear Schrédinger equation is introduced and analyzed. The bounded solutions can be
organized in hierarchies composed of periodic, quasiperiodic, as well as chaotic orbits on the phase
plane of the nonlinear map. A “stability-zone” diagram, where the bounded orbits exist, is
displayed in the parameter space, serving as “phase diagram” of the nonlinear Schrodinger equation
under appropriate boundary conditions. Studies of the stability zone yield useful information for
the physical problems considered. The periodic orbits and their stabilities can be obtained by a con-
vergent perturbation method. Finally, we remark on several physical problems where these results
might be applicable. In particular, we discuss the stabilities of the large polaron solution in the Hol-

stein model.

I. INTRODUCTION

The nonlinear Schrodinger equation has been very use-
ful in describing many physical systems involving non-
linearity, such as the propagation of classical waves in
dispersive nonlinear media.! The common approach in
dealing with these systems is to take advantage of the fact
that in many cases the wave fields have small amplitudes
and their envelopes vary slowly in space, so they can be
approximately described by the continuum nonlinear
Schrodinger equation and treated by perturbation
methods. This strategy has also been used for physical
systems with underlying crystalline structures, where the
relevant order parameters are approximated by continu-
ous mean-field variables.'”> However, in condensed-
matter physics, the fundamental periodicity introduced
by the discrete lattice is known to play an essential role,
through the Bloch theorem, in our understanding of the
properties of many important physical quantities. Al-
though the effects of periodicity are not obvious in non-
linear systems due to lack of the principle of superposi-
tion, it is likely that they might have important conse-
quences in certain cases. In this paper, we consider the
problem of interplay of nonlinearity and periodicity by
studying a particular type of the discrete nonlinear
Schrodinger equation, i.e., a time-independent one-
dimensional Schrodinger equation of the tight-binding
form with a cubic nonlinear term,
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where 9, is the complex “wave function” at the nth la-
tice site and E and A are real parameters representing en-
ergy and nonlinear coupling constant, respectively. The
underlying periodicity is expressed in the discrete form of
Eq. (1). Equations of similar form have appeared in a
number of physical models, including, among others, the
lattice ¢* theory of commensurate-incommensurate
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structural phase transitions,”* Holstein’s polaron model
on molecular crystal chain,* electronic®® and optical’
responses on nonlinear lattice (superlattice), and, most re-
cently, the mean-field theory of periodic array of twin-
ning planes in the high T, supeconducting oxides.® Un-
der the continuum approximation, Eq. (1) is replaced by a
second-order nonlinear differential equation, which is, in
general, integrable via the inverse scattering transforma-
tion, and the solitary wave type of solutions often follow.
However, in applying such a procedure, one often ignores
completely the periodicity in the basic equation, along
with its physical effects such as pinning of the order-
parameter field by the lattice. On the other hand, the
infinity of difference equations in Eq. (1) can be viewed as
a nonlinear dynamical map where n denotes the discrete
“time.” More precisely, Eq. (1) belongs to the class of
area-preserving nonlinear return maps on the Poincare
surface of section, describing nonlinear dynamics of two-
degrees-of-freedom classical Hamiltonian systems. Much
progress has been made in the studies of such nonlinear
dynamical systems in the past two decades, and it is well
known that they can exhibit rich and complex behavior,
due to their nonintegrable characters. To see the
difference between the continuum approximation and the
nonlinear dynamical approach we rewrite Eq. (1) in the
form of a “‘dynamical” equation,

d*y, Ak
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where ¢, is now a function of the continuous variable ¢.
In contrast to the continuum approximation, the pres-
ence of the t-dependent 6-function factor, expressing
periodicity, makes the above equation nonintegrable. It
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is our purpose, in this paper, to study the general proper-
ties of solutions to the discrete nonlinear Schrodinger
equation by applying the concepts and methods
developed for area-preserving nonlinear dynamical maps,
in the hope that the results will be helpful in understand-
ing particular physical models in which such an equation
appears. We first study a simpler case, namely Eq. (1) in
the real domain, where 1, is replaced by real variable x,,,
satisfying

—xn+l_xn*l—)kx3=Exn . (2)

In Sec. I an area-preserving nonlinear map for Eq. (2) is
analyzed in the context of nonlinear dynamical
theoryc"* 15 and it is shown, based on the theories of Poin-
caré, Birkhoff, and the Kolmogorov-Arnold-Moser
(KAM) theorem, that the bounded solutions to Eq. (2)
correspond to periodic, quasiperiodic, and chaotic orbits
on the phase plane of the map. It also proves useful to
present, on the parameter plane (E,A), the region where
the bounded solutions exist. In Sec. III the periodic or-
bits are searched on the parameter space of Eq. (2), and a
powerful ‘“backward perturbation scheme” developed by
Eminhizer, Helleman, and Montroll!® that allows one to
determine these orbits effectively is demonstrated. The
complex case, Eq. (1), will be treated in Sec. IV, where it
is first reduced to an area-preserving nonlinear map of a
different form by utilizing its symmetry, then the result-
ing map is analyzed in a similar way. Finally, in Sec. V
we summarize the results obtained in the previous sec-
tions and present some remarks on their physical
significance.

II. NONLINEAR SCHRODINGER EQUATION
IN REAL DOMAIN

The particular form of the area-preserving map for Eq.
(2) can be written as

T: y'=x, x'=—y —x(Ax*+E), 3)

such that for given A and E, starting from the ‘“initial
point” (x,,y,) which is usually determined from the
boundary conditions of a particular physical problem, a
series of points (x,,y,)=T"(xq,y,) can be generated,
forming an orbit on the phase plane (x,y). The same orbit
is again subject to the rest of the boundary conditions
and stability requirements imposed by the physical prob-
lem. An orbit which meets all these conditions is then
taken as the physical solution to Eq. (2). Notice that not
all orbits obtained by iterations of T are bounded, only
the bounded orbits are considered to be the relevant solu-
tions. We would also like to point out that there is a dis-
tinction in the meaning of stability for a particular orbit.
As will be discussed next, the stability of an orbit of T
means its linear stability measured by the value of its resi-
due, whereas the corresponding solution’s “physical sta-
bility”” depends on whether such a solution minimizes a
certain action of a physical system. In fact, it has been
shown'”!® that typically a linearly unstable orbit mini-
mizes the action, while a linearly stable orbit corresponds
to the saddle point. Thus, the physical relevance of an

orbit must be examined in the particular problem, as will
be discussed in Sec. V.

At this point, it is useful to summarize the general
properties of map 7. First of all we find that T is an ana-
lytic, area-preserving twist map. It is easy to check that
its Jacobian det(DT)=1, where DT is the linearization of
T)

—(3Ax2+E) —1
1 0

DT (x,y)=

The eigenvalues of DT (x,y) are determined by its trace.
It follows that the stability of a periodic orbit is described
by Te(DTY)=Tr[[[¢-,DT(x,,y,)], or equivalently by
using Greene’s residue'>'* R =1[2—Tr(DT?]. An orbit
is stable (elliptic) when 0 <R <1, except for R =3 or 1,
while it is unstable when R <0 (hyperbolic) or R > 1 (hy-
perbolic with reflection). According to Meiss,!® the
periodic orbits can be organized into classes. Geometri-
cally, each point of an elliptic orbit on the phase plane is
surrounded by nearby periodic orbits of higher classes,
and also by the KAM invariant circles. The rate at
which these nearby points rotate around the given elliptic
orbit is also determined by its residue: R =sin*(wm),
where o is the rotation frequency about one of its points.
When the parameters of map T are varied, R and o of the
elliptic orbit will change, along with its position on the
phase plane. Typically, whenever » reaches a rational
value, for instance p/q where p and g are co-prime-
integers, bifurcations occur and new, higher class period-
ic orbits are born, which rotate around the fixed point of
their parent orbit p times under iteration 77 Typically at
the bifurcation points, the elliptic orbit maintains its sta-
bility, and the nearby quasiperiodic orbits remain until its
residue reaches unity (o =) where the orbit loses its sta-
blity by period-doubling bifurcation. However, there are
exceptional cases occurring at the quadrupling and tri-
pling bifurcation points (R =3 and ) where the elliptic
orbits lose their stability temporarily. These details will
be discussed later.

An important property of T is its reversibility and the

related symmetries.'*!> To show this, we write
T=T,T,, where

T,: x'=y, y'=x,

T,: x'=x, y'=—y —x(Ax?+E) . (4)

The involutions T, and T, satisfy T2=T3=1 so that T
can be inverted: T~ '=T,T,. This implies the “time-
reversal” symmetry of Eq. (2), since no explicitly n-
dependent terms are present in the equation. One would
expect violation of this symmetry when such terms exist,
for instance, in the presence of a constant electric field.
Sets of fixed points of T'; and T, in general, form curves
in the phase plane called symmetry lines. The symmetry
line for T, is simply x=y, and for T, is
y=—1x(Ax?+E). It follows that a periodic orbit of T
is invariant under reflections by T'; or T,, since it is its
own ‘“time” reversal. The symmetry properties are very
helpful in finding periodic orbits, since they require that
the periodic orbit initially on the symmetry lines stay on
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the line as the parameters are changed. Notice that
reflections by T, or T, preserve the period and residue of
the orbit. Also it is observed'* that every time a point of
a periodic orbit on a symmetry line undergoes a bifurca-
tion, two point of the newborn orbit can be found on ei-
ther the same line or the other. In our case, we found
that the class-O elliptic orbits which originate from the
fixed point of T, x =y =0, tend to have points on the
symmetry line of T, x =y, while the higher class period-
ic orbits in the period-doubling bifuraction series appear
on that of T',.

To study the oribts of T, first we consider A >0 and use
the scaled variables (x,y)—(x/V'A,y /V'A), so that A no
longer appears in T and an orbit is determined by choos-
ing E and (x,,y,). In Fig. 1 we display the stability zone
of map T on the parameter plane, which consists of the
images of symmetry line x =y under interactions of T.
The stability zone represents all the bounded orbits gen-
erated by T starting from x3=p2=A on the symmetry
line of T, or equivalently, the trajectories of Eq. (2) with
zero ‘“‘initial momenta.” The importance of the stability
zone is that it describes the stabilities of all the class-O el-
liptic orbits, which are the continuations of the linear
periodic solutions of Eq. (2) as A is increased from zero,
and thus serves as the “phase diagram” of the nonlinear
Schrodinger equation. The numerical results we present
here are only for positive A, since for A <0 the symmetry
line for the class-0 elliptic orbits becomes x =—y. In
fact, the stability zone in the latter case has the same
shape as in Fig. 1 provided E is replaced by —E. In one
of the physical problems we considered, namely the
Holstein’s molecular crystal model, such a relation be-
tween positive and negative A represents the electron-hole
conjugation.

In generating the stability zone, an upper limit is im-
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FIG. 1. “Stability zone” diagram on the parameter plane
(E,A), showing the regions for bounded (shaded) and divergent
(unshaded) orbits of map T [Eq. (2)]. Solid curves represent el-
liptic orbits, each labeled with wy=p /q.

posed in our numerical procedure so that only those or-
bits smaller than the upper limit are considered bounded.
We found that the stability zone boundary is sensitive to
neither the upper limit nor the number of iterations, as
long as a moderate number of the order 10? is exceeded.
In fact, the unbounded orbits diverge as exp(3”) [when
the cubic term in Eq. (2) is dominant]. On the phase
plane, the bounded orbits are organized in a hierarchical
structure of “islands around islands.” Each elliptic orbit
at the center of an island is surrounded by KAM invari-
ant circles and satellites of higher class periodic orbits,
forming the attraction basin of the elliptic orbit. The
shape of the stability zone can be understood by studying
the evolution of the periodic orbits as A increases from
zero. When A=0, /x,y)=(0,0) is the elliptic fixed point
of T for —2<E <2 where R =sin*(wym)=1+E/4. In
fact, the solutions to the linearized Eq. (2) in this case can
be parameterized by a wave vector k in [0,27] so that the
allowed energies, given by E = —2 cosk, form an “energy
band” of the linear Schrédinger equation. When A is in-
creased from zero, each solution evolves from its corre-
sponding linear form. Solutions with rational values of k
become the elliptic orbits on the phase plane whose
wo=k /2m, while those with irrational k form the KAM
invariant circles. As will be shown in Sec. III, when the
parameters A and E satisfy certain relations, the corre-
sponding periodic solution can be expressed in terms of a
single (fixed) frequency Fourier series whose Fourier am-
plitudes are gradually renormalized as A is varied, giving
rise to a curve in the stability zone. Several such curves
for lower period orbits are shown in Fig. 1. It is evident
that the attraction basins shrink as A increases. Eventu-
ally these curves terminate at the zone boundary, when
the corresponding periodic orbits reach the point R =1
and lose their stability, while the encircling invariant cir-
cles all disappear.

Although the periodic orbits all together form only a
zero-measure set among all orbits on the phase plane,
they are dense everywhere on the plane and can trap oth-
er orbits around them. Thus, it appears that the struc-
ture of the stability zone can be understood in light of the
periodic orbits and their stabilities. It should be noted
that since the orbits of higher classes do not intersect the
symmetry line x =y, the boundary of the stability zone in
Fig. 1 is, in general, inside the true boundary of all
bounded orbits. However, we expect it to be a good ap-
proximation to the latter because, as shown by Meiss, '°
the areas of the attraction basins of the higher class is-
lands typically diminish at high rates as they approach
their accumulation limits.

Before moving to the next section where periodic or-
bits will be our major concern, we discuss here the class-0
period-1 orbit which is simply the fixed point of 7, but
has the largest attraction basin (see Fig. 1). Two fixed
points are born in a saddle-node bifurcation at E=—2
on the symmetry line of 7',

x=y=+V—-2—E, R=—1—§. (5)
On its route to the stability-zone boundary, the fixed

point temporarily loses its stability in the quadrupling



and tripling bifurcations, at E = —3.0 and —3.5, respec-
tively. The newborn orbits are not on the symmetry line
x =y. As a result, there are cuts at the places of these bi-
furcations (see Fig. 1, similar features can be seen on oth-
er periodic orbits, e.g., on period-4 orbits in Fig. 2.). In
the end, at E = —4, the fixed point loses its stability by
period-doubling bifurcation. The dominant symmetry
line for this period-doubling bifurcation series is found to
be that of T,. We have followed numerically the period-
doubling bifurcation series up to the eighth bifurcation
point as is shown in Table I. The period of the orbit be-
tween (n — 1)th and nth bifurcation is 2", while the value
of E at the nth bifurcation point is E,, and Ax, denotes
the distance between the two points of the period-2" orbit
on the symmetry line at E,,, i.e., Xyn "X yn-1- The numer-

ical data in Table I indicate that E, and Ax, approach
their accumulation points geometrically. From this be-
havior, two accumulation rates 6§ and a are obtained
whose values indeed confirm the universality hypothesis
for area-preserving dynamical maps.> '*

III. A PERTURBATION METHOD
FOR PERIODIC ORBITS

To determine the periodic solutions of a nonlinear
equation one usually performs perturbtive series analysis,
as in a typical initial value problem. For Eq. (2) this
amounts, for a given parameter E, to studying how am-
plitude and frequency of a periodic solution change when
a small variation of (x,,y,) is made, i.e., moving horizon-
tally on the stable zone diagram. However, for the
nonintegrable nonlinear system the perturbation series, in
general, diverges due to the presence of resonant denomi-
nators.'® To overcome this difficulty, one has to modify
the procedure of perturbation. Here we choose to start
from the linear periodic solution and to find, for this par-
ticular orbit, its Fourier series as functions of both E and
A. In other words, we fix the central rotation frequency
o, of an orbit and look for its Fourier amplitudes renor-
malized as the parameters change in following the orbit.
This procedure avoids the resonant denominators be-
casue the exact periodicity condition allows an expression
of the orbit in terms of a single Fourier series. Such a
“backward scheme” of perturbation was developed by
Eminhizer et al.'® and was successfully applied to the
study of a system of coupled nonlinear oscillators. The
results of our calculations for several of the lower-order
class-0 periodic orbits are presented in Fig. 1 as curves
traversing the stability zone, each labeled with w,=p /q.
In the following, we demonstrate the method for several
cases.

A particular periodic orbit can be written in terms of a
single frequency Fourier series,

x, = i Ameim(Zﬂ'an+4§) ’ ©)
m=—o
where the Fourier amplitudes are real numbers satisfying
A,, = A_, , and d is a phase to be fixed by the initial con-
ditions (x4,yq)=(xg,x_;). Under Fourier transforma-
tion in Eq. (6), Eq. (2) becomes
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FIG. 2. (a) Period-4 elliptic and hyperbolic orbits and the
surrounding invariant circles on the phase plane of map T at
E =—0.2. Also shown are the separatrix connecting the hyper-
bolic period-4 orbit. (b) Period-4 elliptic orbit undergoing two
pairs of period-doubling bifurcation at E=—V2/2. The
newborn orbits are surrounded by invariant circles. (c) Chaotic
orbit and invariant circles around the point (0.5,0.0) of the hy-
perbolic period-4 orbit at E = —0.25.
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TABLE 1. Period-doubling bifurcation series, where E, denotes the value of E at the nth bifurcation point and Ax, the distance

between the points of the orbit at E,. See discussions in the text.

. n _E,,—E,, _ Ax,,
Period (2") E, Ax, 5, E,__E, a,= Ax,
2°=1 —4.0
2'=2 —4.242640687 1192851 —0.239146 3117381003
2= —4.270857563484 1798 0.061 6475189392572 8.599 1335107935711 —3.879252820762 1296
2= —4.274095 6122594054 —0.0151949324105267 8.714 160 385965 398 4 —4.057110441409 3488
2°=16 —4.274466973 1115422 0.003 7897738391560 8.719413 3592540989 —4.009456251 3288870
25=132 —4.274 509 555467 5229 —0.000942 669911998 5 8.721002 9502622015 —4.020255437 156702 6
20=64 —4.274514438 1635616 0.000234 6381673058 8.721074 5135872510 —4.017 547199684414 8

—4.274 514998035401 3
—4.274 515062232812 1

—0.000058 3937217341
0.000014 532872 6803

8.721095958 882891 5
8.721096 890406 053 6

—4.0182088131707330
—4.018 043 990246 709 2

[2cos2mnw))+E1A,=— S A; Ay Ay_y_, . (D
Lm

For wy=p/q with p and g being co-prime-integers, we
solve the above equations for the independent Fourier
coefficients A, with n in the range —(gq/2)<np <q /2.

As an example, we first consider the period-4 orbit for
which exact solutions can be obtained. The results are
also shown in Fig. 2. Specifying w,=+, we have 4,, 4,
and A, as the only independent Fourier amplitudes, and
Eq. (7) reads

—(2+E)Ay= A3} +3(24,+ A4,)A?
+3A4,(AgA,+ A3)e'® |
—EA,=3A34,+6A454,4,+34,A%'®
+A43(3+e "), (8)
(2—E)A,=3(A,+24,)A1+3454,
+3A4,A4% TP+ 43014

The condition for the reality of { 4,} and the initial con-
dition x,=x_, =V'A uniquely determine the quantities
we are looking for, 4,=A4,=0, 4,=V —(E/2), and
8= —(m/4), so that

x,=V —2E cos in”‘% , R=4E*1—E?% . 9)

This is simply a straight line A= —E on the stability-zone
diagram. If one requires that all the coefficients be
nonzero and solves Eq. (8), one will find a lengthy expres-
sion for an orbit on the symmetry line of T, describing
the period-4 orbit born after the second period-doubling
bifurcations. Thus as A increases from zero, the elliptic
period-4 orbit starts at E =0 where R =0, passing the
marginal point R =1 at E=—(1/V2), and continues
until R decreases to zero at the stability-zone boundary
where E =—1. After this, it becomes hyperbolic with
negative residue. Such a journey of R is typical for all the
even-period elliptic orbits, in constrast to the odd-period
ones for which R eventually exceeds 1 and the corre-
sponding oribts are hyperbolic with reflection. To ex-
plain this, consider a period-q, elliptic orbit with even g,

each point (x,,y,) of the orbit is a fixed point of T If,

however, this orbit contains anotheg elliptic orbit half of
its period such that T%'(x,,y,)=T""%(x,,p,), then their
residues are related by qu =4Rq2(1—qu) and qu will

pass 1 and return to zero while R 4 rises monotonically

from zero to 1. The above period-4 orbit indeed presents
such a case where R,=1—E? R,=1(1—E), and R, is
given in Eq. (9). This behavior results in the cuts on the
branch of period-4 orbits in Fig. 1, occurring at
E=—1/V2 with R,=1, and E=-—V3/2 with
R,=3/4, where there are pairs of period-doubling [see
Fig. 2(b)] and period-tripling bifurcations, respectively.

The period-4 hyperbolic orbit can also be easily deter-
mined by choosing 6 =/2

T,
n 5 +

x,=V —E cos 5

, R=—E?*2+E? . (10)

The chaotic orbits around it are shown in Fig. 2(c), which
are surrounded by the invariant KAM circles and do not
escape to infinity.

It is clear that for orbits of higher periods more
Fourier components are involved, thus more equations
need to be solved. In general, only serial solutions are
available for most of the periodic orbits. We now outline
this perturbative approach. Since the period-q orbit orig-
inates in the neighborhood of elliptic fixed point (0,0),
where its amplitudes are small and where E is close to
—2cos(2mw,) we use a relocated form of Eq. (7) and in-
troduce a parameter € to indicate the orders of the serial
solution,

X, 41tXx, 1 —2cos(2mwg)x,,
=¢€{ —[2cos(2mwy)+Elx, —x}} . (11)

We attempt a solution of the form

2 Ameim(Z‘n'na)O+8) , (12)

j=1 m=—oo

with the conditions A)/=4Y —and 4Y'=0 if
Im|>2j +1, which leads to the following equation:



2[cos(2mnw,) —cos(2mwy)] A Y

Pi— Jy 4ds 4
= —[2cos(2mwy)+E] A}/ ”—WE_” A0 AL AL

(13)

where the summation runs over n,,n,,n; and j,,j,,j3
under the constraints n,+n,+n;=n and j,+j,+j;
=j—1. The zeroth-order solutions for j =0, n =0,%1
are A’ =0 and 4'?)70, to be determined by higher-
order equations.

In solving these higher-order equations, we take as ex-
ample one of the even-period orbits. Specifying wy,=p /g,
it follows that 4,, =0 for even g, while for odd-period
orbits, such as those with w,=1/3,1/5, 4,,, especially
A, will resume nonzero values from the higher-order
contributions. The reason for this is that only one point
of an odd-period orbit appears on the symmetry line of
T, whereas there are two such points for an even-period
orbit. Thus, unlike an even-period orbit, the class-O odd-
period orbits are not symmetric under reflection about
the line y = —x, which is perpendicular to the symmetry
line x =y. The nonzero coeflicients are given as follows:
For j=1,n=0,%1,%+2,%3,

402 = —HE +2coswy) ,
A(|0)3

B 2[cos(3wq) —coswg] ;

(1) —
A3 -

for j =2, n =0,%1,£2,13,+4,15,

()= _1 4(1)
Al - ‘2-A3 Y
(1)2
AP =32
2 (0)
A]

(2) — __ (1) 4(0)2
A5 - 3A3 Al .

To complete the second-order solutions we derive from
the j =3 equations 4 =—124%. It is evident from
A" that E decreases from its value for the correspond-
ing linear solution, —2cos(2mw,) as nonlinearity in-
creases. Also, the above expressions for 4/ indicate
that the Fourier series converges rapidly for the parame-
ter values inside the stability zone. We use these Fourier
components to construct the periodic solutions with vari-
ous even periods and found that the results are already
accurate enough for our purposes.

IV. NONLINEAR SCHRODINGER EQUATION
IN COMPLEX DOMAIN

Writing ¢, =x, +iy,, Eq. (1) becomes

=Xy 41X, 1 —Mx;+y2)x, =Ex, , (14)
“Vn+1"Vn »1—)»(x3+y,,2)y,, =Ey, .

In contrast to the real wave-function case [Eq. (2)], Eq.
(14) contains two coupled second-order difference equa-
tions for the real variables, and represents a nonlinear
map in the four-dimensional phase space (x,_,,

41 ONE-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION: ... 805

X,,¥n—1>Vn). A problem that might arise for such a non-
linear map involves the so-called Arnold’s diffusion
which is known to exist, in general, in nonlinear dynami-
cal systems with degrees of freedom greater than 2. As a
consequence, one cannot guarantee the existence of a par-
ticular bounded orbit (x,,y,) over aribtrary distance on
the lattice. However, as we will show next, because of
the conservation of probability current implied in Eq. (1),
this four-dimensional map can be reduced to two dimen-
sional, and the possibility of Arnold’s diffusion is thus
ruled out.

In order to derive the reduced map, we write the wave

. 6
function and Eq. (1) in polar coordinates 1, =r,,e' " and

r, +1cos(A@, ) +r,_cos(AB,)=2f(r,),
(15)
r"+1Sin(A9n+1)—rn_lsin(A9n )=0 >

where A6,=6,—6,_, and f(r)=—1r(Ar*+E). The
second equation defines an integral of motion for Eq. (15)

J=r,r,_sin(Ab,) , (16)

which has the physcial meaning of probability current.
Following Bountis and co-workers!® in their study of a
model for colliding proton beams in the storage ring, we
introduce new variables,

2
ry

J cot(AD,)

uy,
Un

. (17)

The reduced map S follows from Eq. (16) and the first
equation in Eq. (15)

1
S: Up 41 = Wi +J%, v, =—v,—u,(u,+E),
n

(18)

where its variables have been scaled by the nonlinear cou-
pling constant A: (u,v)—(Au,Av), and A is absorbed into
J: J—AJ. Besides E, J is the only other parameter in S,
which describes the strength of the nonlinearity and is to
be determined from A and the “initial conditions.” Map S
is related to Eq. (1) as follows. Once 3, and 9, are known
in a particular physical problem, ry, r,, 8, and 6,, are
found immediately. Then J follows from Eq. (16), and
(uy,v,) is used to initiate the iterations in Eq. (18). Re-
versely, r, and A6, (in [0,7] or [7,27], respectively, for
positive or negative J) can be obtained directly from
(u,,v,), and 6, =31 _,A0,,, for any n. This procedure
enables us to study the solutions of Eq. (1) in terms of the
(bounded) orbits of map S on the phase plane (u,v). For
the special case J =0, we use directly Eq. (14) which is
now decoupled and returns to the case of Secs. II and III.

Map S shares the properties we discussed for map T.
Indeed, S is area preserving for every periodic orbit, since
det(DS?)=T]'%L det[ DS (u,,v,)]=1, where det[DS (u,,
v,)]=(u, +)/(u,). The reversibility is similarly ex-
pressed as S =S,S,, where

Sy u’=%(vz+J2), v'=v,

Sy u'=u, v'=—v—u(u+E). (19)
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The involutions satisfy S3=S3=1 so that S "'=§5,.
Geometrically on the phase plane, S; has the effect of
“inversion” along the u axis about the u >0 branch of
hyperbola u?—v?=J?% and S, represents a reflection

about the parabola v = —Ju (u +E) along the v axis (cf.
Fig. 4). The two curves u =(24+J)12  and
v=—1u(u +E) are the symmetry lines of S| and S, re-
spectively.

The analysis of map S follow closely what we did in
Sec. II. We construct the stability zone for map S. We
choose the initial point ry=r, =V'A, ,=0, 6, =k, corre-
sponding to (uy,v,) on the symmetry line of S;. Howev-
er, we have now three independent parameters to be
specified, namely, E, A, and k. In order to present the
stability zone on the parameter plane (E,A) we select k in
the following way. E = —2cosk when —2=<FE <2, and
k =2m/100 when E < —2. Such a choice of k does not
affect our purpose of understanding the structures of the
solutions. Besides, it presents a typical situation in the
nonlinear transmission problem we have studied. In ad-
dition, we consider only positive values for A for which
we found no bounded solutions when E > 2. For negative
A, one discovers the same stability zone provided k is re-
placed by m+k. It is interesting to see that the stability
zone in this case (Fig. 3) resembles the shape found in
Fig. 1. Also shown are curves for some of the lower-
order class-0 period elliptic orbits. In Fig. 4, we plot the
elliptic and hyperbolic period-5 orbits, and the surround-
ing invariant circles and chaotic orbits. Notice how the
orbits are arranged about the two symmetry lines. In fact
the symmetry lines make it much easier to locate numeri-
cally a periodic orbit. Since the starting point of the
iterations (uy,v,) is always on the symmetry line of
Sp,u;=wi+J)2 it is sufficient to do a one-
dimensional search for a particular periodic orbit.
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FIG. 3. “Stability zone” diagram on the parameter plane

(E,A) for map S [Eq. (1)], similar to Fig. 1. Solid curves

represent elliptic orbits, each labeled with w,=p /q.
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FIG. 4. Period-5 elliptic and hyperbolic orbits at
E =—1.598, with their surrounding chaotic orbits and invari-
ant circles on the phase plane (u,v) of map S. The solid curves
are the symmetry lines of S, and S,.

V. CONCLUSIONS AND DISCUSSIONS

In the preceding sections we have shown that the one-
dimensional discrete nonlinear Schrodinger equation can
be treated as area-preserving nonlinear dynamical maps
in both real and complex domains. As a result, its solu-
tions share the universal properties of the typical two-
degrees-of-freedom Hamiltonian system. The typical be-
havior of the solutions can be summarized in terms of the
stability-zone diagrams over the entire ranges of the pa-
rameters. Although such diagrams are constructed for a
particular type of boundary conditions, namely the solu-
tions they present must intersect the symmetry lines, it is
clear that the primary features will emerge in many other
problems involving the nonlinear Schrodinger equation.
These features revealed in our study are in contrast to the
traditional continuum approximation approaches used in
solving this type of equation where, for instance, the
analyticity of the solutions eliminates the possibility of
chaotic states and the fractal structures of the stability
zones. Moreover, our results might provide some gui-
dance to the applicability of the continuum approxima-
tion, since the magnitudes of the parameters in the prob-
lem, such as the nonlinear coupling constant or the am-
plitudes of the solutions are not the only factors to be
considered in applying the continuum approximation. It
is clear to Figs. 1 and 3 that the linear periodic solutions
can survive even in the region of strong nonlinearity. In
fact, in the attraction basins of these elliptic orbits, the
nearby KAM invariant circles are well behaved as shown
in Fig. 5 in the real space of the lattice, recovering the
soliton arrays obtained in the continuum approximation.
For small nonlinearity, these attraction basins, especially
from the lower-period orbits, would dominate the stabili-
ty zone, so it seems reasonable to expect such smooth
solutions to prevail in the corresponding physical prob-
lems. Indeed, when E is in the “energy band” of the
linearized Eq. (1), —2 < E <2, the smooth solutions can
be obtained under the continuum approximation by treat-
ing nonlinear terms as small perturbations. However,
when E < —2, one enters the genuinely nonperturbative
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FIG. 5. r} as function of the lattice site n on a segment of the
lattice. E =—2.01, k=27/100, and A=1.7X10"% ——),
3.1X107%(— — —),and 5.0X 107 3( —. —. —.), respectively, for
the three states, corresponding to the weak nonlinearity regime
where continuum approximation is valid.

regime where the linear solutions are themselves unstable
and it is necessary to make the continuum approximation
or perturbation expansions about the elliptic orbits. This
information is provided in our studies of the stability
zone and the periodic solutions using the backward per-
turbation technique. When nonlinearity increases, ap-
proaching the boundary of the stability zone, the attrac-
tion basins of the elliptic orbits shrink while the chaotic
regions surrounding the hyperbolic orbits grow and be-
come connected as the invariant circles disappear. Final-
ly, one moves into the region of escaping orbits. A typi-
cal chaotic solution is shown in Fig. 6, in contrast to the
smooth solutions of Fig. 5, no analytic envelope function
can be found for such a solution. A transition from
effectively weak to strong nonlinearity has also been stud-
ied in other nonlinear systems. For instance, in the well-
known Fermi-Pasta-Ulam model where it is shown?® that
as the energy density (or equivalently, the initial ampli-
tudes) is raised, the soliton solutions obtained from the
continuum [Korleweg—de Vries (KdV)] equation are
eventually replaced by the chaotic, energy-equipartition
modes.
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FIG. 6. Similar to Fig. 5, but for E=—1.0, k =7/3, and
A=1.0593, chaotic orbit around the period-2 hyperbolic orbit.
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FIG. 7. (a) Separatrix of the fixed point of map T at
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symmetry lines. (b) Enlargement of the larger rectangle shown
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points. Also shown are the symmetry lines intersecting the
separatrices at the two homoclinic points labeled 4 and B. (c)
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stable separatrix wandering about the unstable one, only a seg-
ment of the separatrices is drawn to keep the figure legible. Ar-
rows denote the eigenvectors of the hyperbolic fixed point.
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Applying the results obtained in the preceding sec-
tions, we have studied elsewhere® the problem of wave
transmissions in a finite one-dimensional nonlinear lattice
described by Eq. (1). The information gathered from the
stability zone and the structures of the periodic orbits
proves to be essential in explaining the numerically ob-
served features in the transmission coefficient, such as
bistable and noisy responses. Here, as an example, we
consider briefly a different physical problem, namely,
Holstein’s large polaron model,* which provides a case
for our discussions of the physical stability!”!'® of the
solutions and the effects of periodicity of the lattice.
Holstein’s large polaron is described by the solution to
Eq. (1) which minimizes the following energy functional
of the system:

ET[{d}m}]:_2[%}"I¢n|4+¢:(¢n—l+¢n+])] ’ (20)

where A= 42/ toM v?, where A is the adiabatic electron-
phonon coupling constant, M and v are, respectively,
mass and frequency of the diatomic molecules which
form the underlying lattice chain, and ¢, denotes the elec-
tronic hopping matrix element which is also the unit of
E;. The normalization condition of the electron wave
function on infinite lattice 3, |4,|>=1 requires the large
polaron solution to vanish for n —=* 0. It can be easily
shown that, for such a solution, Eq. (1) reduces to Eq. (2),
which is readily solved under the continuum approxima-
tion by the following self-trapped minimal energy solu-
tion:

x, =+V(A/8)sech[(n —£)/1,], (21)

where n is now a continuous variable. The electronic en-
ergy of the large polaron is given by E=—2—(A/4)%,
and /, =4/A is the polaron’s width. The free parameter §
specifies the polaron’s centroid position, implying the
translational invariance of such a solution.

On the other hand, the large polaron as the solution of
the discrete Eq. (2) is shown in Fig. 7 on the phase plane
the map 7. More precisely, it is described by the separa-
trix around the hyperbolic fixed point x =y =0 of T. For
small A, the separatrix looks like a single smooth curve,
and is indeed very well approximated by Eq. (21). How-
ever, it is known that non-integrable nonlinear maps al-
low no such curve. Instead, the curve splits into two

stable and unstable separatrices intersecting each other at
the so-called homoclinic points [Fig. 7(b)]. The stable
and unstable separatrices map onto each other by the in-
volutions 7'y and T,. As a result, there must be a homo-
clinic point on each of the two symmetry lines. Starting
from these two points, one can generate an infinite set of
homoclinic points by iterations of T and T !, which cor-
respond to the only possible bound state of Eq. (2). Con-
sequently, the large polaron state is represented asymp-
totically by the set of homoclinic points and is defined
only on the discrete lattice sites, implying a reduced
translational symmetry corresponding to translations in
the unit of the lattice constant. Furthermore, since the
distances between two homoclinic points diminish to zero
when the hyperbolic fixed point is approached [cf. Fig.
7(c)], the lengths of the separatrix loops connecting the
two points diverge to preserve the area they encircle, and
any small perturbation would set off the asymptotic solu-
tion into wandering along with the separatrices. Indeed,
for large enough A, the separatrices become chaotic or-
bits confined by the nearby invariant circles in a narrow
region on the phase plane. Physically, this means that
even though Eq. (21) presents a reasonable continuum ap-
proximation to the large polaron state for small A (when
the chaotic region is very thin), it is unstable against the
pinning of the discrete lattice and will eventually break
into an array of randomly pinned small polarons. Thus,
we conclude that the self-trapped solution alone, Eq. (21),
cannot serve as the lowest-order approximation to the
Holstein model, when the lattice periodicity is taken into
consideration. Nonadiabatic effects must be carefully in-
cluded before one proceeds to consider higher-order
corrections.?! We also point out that a transition from
large to small polaron would occur before the continuum
approximate solution in Eq. (21) breaks down, when A is
so large that the polaron’s width becomes comparable to
the lattice constant, lp =1.
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FIG. 1. “Stability zone” diagram on the parameter plane
(E,A), showing the regions for bounded (shaded) and divergent

(unshaded) orbits of map T [Eq. (2)]. Solid curves represent el-
liptic orbits, each labeled with w,=p /q.
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FIG. 3. *Stability zone” diagram on the parameter plane
(E,A) for map S [Eq. (1)], similar to Fig. 1. Solid curves
represent elliptic orbits, each labeled with w,=p /q.



